dinámica de poblaciones

  dinámica de poblaciones es la rama de las ciencias de la vida que estudia el tamaño y la composición por edades de las poblaciones como sistemas dinámicos, y los procesos biológicos y ambientales que los impulsan (como las tasas de natalidad y muerte, la inmigración y emigración). Los escenarios de ejemplo son el envejecimiento de la población, el crecimiento de la población o la disminución de la población.


Historia

La dinámica de poblaciones ha sido tradicionalmente la rama dominante de la biología matemática, que tiene una historia de más de 210 años, aunque más recientemente el alcance de la biología matemática se ha expandido enormemente. El primer principio de la dinámica de la población es ampliamente considerado como la ley exponencial de Malthus, según el modelo del modelo de crecimiento de Malthus. El período inicial estuvo dominado por estudios demográficos como el trabajo de Benjamin Gompertz y Pierre François Verhulst a principios del siglo XIX, quienes refinaron y ajustaron el modelo demográfico maltusiano.


F. J. Richards propuso una formulación de modelo más general en 1959, ampliada por Simon Hopkins, en la que los modelos de Gompertz, Verhulst y también de Ludwig von Bertalanffy se tratan como casos especiales de la formulación general. Las ecuaciones depredador-presa de Lotka-Volterra son otro ejemplo famoso, así como las ecuaciones alternativas de Arditi-Ginzburg. El juego de computadora SimCity, Sim Earth y el MMORPG Ultima Online, entre otros, intentaron simular algunas de estas dinámicas poblacionales.


En los últimos 30 años, la dinámica de la población se ha complementado con la teoría de juegos evolutivos, desarrollada primero por John Maynard Smith. Bajo esta dinámica, los conceptos de biología evolutiva pueden tomar una forma matemática determinista. La dinámica de la población se superpone con otra área activa de investigación en biología matemática: la epidemiología matemática, el estudio de las enfermedades infecciosas que afectan a las poblaciones. Se han propuesto y analizado varios modelos de propagación viral que proporcionan resultados importantes que pueden aplicarse a las decisiones de política sanitaria.


Tasa intrínseca de aumento

La tasa a la que una población aumenta de tamaño si no hay fuerzas dependientes de la densidad que regulen la población se conoce como tasa intrínseca de aumento. Está


{\displaystyle {\dfrac {dN}{dt}}{\dfrac {1}{N}}=r}{\displaystyle {\dfrac {dN}{dt}}{\dfrac {1}{N}}=r}

donde la derivada {\displaystyle dN/dt}{\displaystyle dN/dt} es la tasa de aumento de la población, N es el tamaño de la población y r es la tasa intrínseca de aumento. Por tanto, r es la tasa máxima teórica de aumento de una población por individuo, es decir, la tasa máxima de crecimiento de la población. El concepto se usa comúnmente en biología de poblaciones de insectos para determinar cómo los factores ambientales afectan la velocidad a la que aumentan las poblaciones de plagas.


Gestión de la pesca y la vida silvestre

En la ordenación de la pesca y la vida silvestre, la población se ve afectada por tres funciones de tasa dinámica.


Natalidad o tasa de natalidad, muchas veces reclutamiento, lo que significa alcanzar un cierto tamaño o etapa reproductiva. Por lo general, se refiere a la edad en la que un pez puede capturarse y contarse en las redes.

Tasa de crecimiento de la población, que mide el crecimiento de los individuos en tamaño y longitud. Más importante en la pesca, donde la población a menudo se mide en biomasa.

Mortalidad, que incluye la mortalidad por cosecha y la mortalidad natural. La mortalidad natural incluye la depredación no humana, las enfermedades y la vejez.

Si N1 es el número de individuos en el momento 1, entonces


{\displaystyle N_{1}=N_{0}+B-D+I-E} afectan a las poblaciones. Se han propuesto y analizado varios modelos de propagación viral que proporcionan resultados importantes que pueden aplicarse a las decisiones de política sanitaria.

Tasa intrínseca de aumento

La tasa a la que una población aumenta de tamaño si no hay fuerzas dependientes de la densidad que regulen la población se conoce como tasa intrínseca de aumento. Está

{\displaystyle {\dfrac {dN}{dt}}{\dfrac {1}{N}}=r}

 dinámica de poblaciones es la rama de las ciencias de la vida que estudia el tamaño y la composición por edades de las poblaciones como sistemas dinámicos, y los procesos biológicos y ambientales que los impulsan (como las tasas de natalidad y muerte, la inmigración y emigración). Los escenarios de ejemplo son el envejecimiento de la población, el crecimiento de la población o la disminución de la población.


Historia

La dinámica de poblaciones ha sido tradicionalmente la rama dominante de la biología matemática, que tiene una historia de más de 210 años, aunque más recientemente el alcance de la biología matemática se ha expandido enormemente. El primer principio de la dinámica de la población es ampliamente considerado como la ley exponencial de Malthus, según el modelo del modelo de crecimiento de Malthus. El período inicial estuvo dominado por estudios demográficos como el trabajo de Benjamin Gompertz y Pierre François Verhulst a principios del siglo XIX, quienes refinaron y ajustaron el modelo demográfico maltusiano.


F. J. Richards propuso una formulación de modelo más general en 1959, ampliada por Simon Hopkins, en la que los modelos de Gompertz, Verhulst y también de Ludwig von Bertalanffy se tratan como casos especiales de la formulación general. Las ecuaciones depredador-presa de Lotka-Volterra son otro ejemplo famoso, así como las ecuaciones alternativas de Arditi-Ginzburg. El juego de computadora SimCity, Sim Earth y el MMORPG Ultima Online, entre otros, intentaron simular algunas de estas dinámicas poblacionales.


En los últimos 30 años, la dinámica de la población se ha complementado con la teoría de juegos evolutivos, desarrollada primero por John Maynard Smith. Bajo esta dinámica, los conceptos de biología evolutiva pueden tomar una forma matemática determinista. La dinámica de la población se superpone con otra área activa de investigación en biología matemática: la epidemiología matemática, el estudio de las enfermedades infecciosas que afectan a las poblaciones. Se han propuesto y analizado varios modelos de propagación viral que proporcionan resultados importantes que pueden aplicarse a las decisiones de política sanitaria.


Tasa intrínseca de aumento

La tasa a la que una población aumenta de tamaño si no hay fuerzas dependientes de la densidad que regulen la población se conoce como tasa intrínseca de aumento. Está


{\displaystyle {\dfrac {dN}{dt}}{\dfrac {1}{N}}=r}{\displaystyle {\dfrac {dN}{dt}}{\dfrac {1}{N}}=r}

donde la derivada {\displaystyle dN/dt}{\displaystyle dN/dt} es la tasa de aumento de la población, N es el tamaño de la población y r es la tasa intrínseca de aumento. Por tanto, r es la tasa máxima teórica de aumento de una población por individuo, es decir, la tasa máxima de crecimiento de la población. El concepto se usa comúnmente en biología de poblaciones de insectos para determinar cómo los factores ambientales afectan la velocidad a la que aumentan las poblaciones de plagas.


Gestión de la pesca y la vida silvestre

En la ordenación de la pesca y la vida silvestre, la población se ve afectada por tres funciones de tasa dinámica.


Natalidad o tasa de natalidad, muchas veces reclutamiento, lo que significa alcanzar un cierto tamaño o etapa reproductiva. Por lo general, se refiere a la edad en la que un pez puede capturarse y contarse en las redes.

Tasa de crecimiento de la población, que mide el crecimiento de los individuos en tamaño y longitud. Más importante en la pesca, donde la población a menudo se mide en biomasa.

Mortalidad, que incluye la mortalidad por cosecha y la mortalidad natural. La mortalidad natural incluye la depredación no humana, las enfermedades y la vejez.

Si N1 es el número de individuos en el momento 1, entonces


{\displaystyle N_{1}=N_{0}+B-D+I-E}



Comentarios

Entradas más populares de este blog

sistema endocrino

la mitosis

Temperatura, volumen, masa, presión